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ABSTRACT 
The rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae) was collected from El-Behera governorate (EB). The 

first generation showed reduced susceptibility to deltamethrin and malathion compared with the laboratory susceptible 
strain (LS). Susceptibility test results (using LS colony as a reference strain) indicated that EB strain has relative toxicity 
ratio, RR50 and RR90 of 16.64 and 9.08 for malathion. Although, EB strain was tolerant to deltamethrin with RR50 of 5.2, it 
was marginally resistant to cypermethrin and entirely susceptible to permethrin. The biochemical results showed elevation 
in the activity of total esterase (ES), carboxylesterase (CE) and glutathione S- transferase (GST) which suggested that the 
metabolic resistance may has a key function in this population.  Furthermore, acetylycholinesterase (AChE) activity in EB 
strain was 3.52 times higher compared with LS strain which pointed the insensitivity of AChE in EB strain. Moreover, 
esterase analysis indicated genetic polymorphism between EB and LS populations which might be attributed to selection 
pressure due to continuous exposure to insecticides. This study suggested the existence of malathion and deltamethrin 
resistance in EB strain which might be a consequence of biochemical alterations. The results of current study indicate the 
importance of continuous monitoring of resistance of stored product insect pests to plan successful management strategies.  

Keywords: insecticide resistance, metabolic resistance, esterase, Sitophilus oryzae, malathion. 

INTRODUCTION 
The rice weevil, Sitophilus oryzae (L.) 

(Coleoptera: Curculionidae) is one of the most 
destructive primary pests which can easily infest 
intact cereal seeds, i.e, rice, wheat, maize and barley 
or non-cereals like split peas and pasta. It may 
attack cereal plants in the fields. The existence of 
this insect causes weight loss, fungi and mites 
infestation thus decrease the grain  quantity and 
quality through increasing free fatty acids contents 
(CABI, 2017). The weight loss interrelated to S. 
oryzae and S. granarius, under natural conditions 
estimated in rice, ranged (56 - 74%) (Koura and El-
Halfawy, 1972). Furthermore, wheat storage in 
Egypt for significant assorted periods is crucial 
because the national production provides only 55% 
of the total requirements (FAO, 2006). The majority 
of the Egyptian storage system is conventional as 
1.6 million tonnes stored in “Shona” (FAO, 2015) 
and around 20-30% of wheat lost during  storage 
(Wally, 2014) which demand  grain protection 
measures that rely markedly on chemical pesticides. 
Chemical pesticides were employed in stored grain 
protection since 1945 started with lindane followed 
by malathion in 1958 and then other 

organophosphate and pyrethroids (Kljajić and Perić, 
2007). The continuous use of insecticides to afford 
lasting grain protection led to development of 
insecticide resistance in stored product insects 
(Kljajić and Perić, 2009) and (Hagstrum and 
Phillips, 2017). Insecticide resistance in stored 
product insects is a growing problem which was 
first reported near the beginning of 1960’s once 
resistance to malathion detected in the red flour 
beetle, Tribolium castaneum (Herbst) in Nigeria, the 
United States, Egypt, Australia (Zettler, 1974) and 
Kenya (Beeman and Nanis, 1986). Moreover, S. 
oryzae developed resistance to organophosphate 
pesticides (Julio et al., 2017) as well  pyrethroid 
insecticides (Heather, 1986 and Athanassiou et al., 
2004). According to Arthropod Pesticide Resistance 
Database, up to date, there are nine cases of 
malathion resistance  were reported in S. orayze 
populations among 38 cases (APRD, 2017). 
Susceptibility shift in an insect populations is a 
demanding limitation factor in chemical control that 
directly leads to increase application rates and  
treatments frequency which have harmful impact on 
economic, environment and human health 
(Hagstrum and Phillips, 2017). Therefore, the 
regular evaluation of insect population susceptibility 
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is considered the foremost step in a successful 
control program. The present work aimed to 
evaluate the susceptibility of S. oryzae population 
collected from Elbehera, Egypt to malathion and 
certain pyrethroids as well to investigate the 
possible associated mechanism (s) of resistance in 
this strain.    

MATERIALS AND METHODS 
Insect strains: A laboratory susceptible strain (LS) 
of Sitophilus oryzae has been continuously reared in 
the laboratory for more than eight years at Faculty 
of Agriculture, Alexandria University. Adult beetles 
(2-3 weeks old) reared on whole wheat under 
stander conditions of 28 °C ±1, RH of 70 ±5 and 
photoperiod L/D of 12:12hr (Strong et al, 1967).   
El-Behera strain (EB): samples of rice were 
purchased and collected from markets located in El-
Behara Governorate, Egypt during summer season 
of 2016. Samples were mixed then the adults of S. 
oryzae were separated and transferred to sterilized 
whole wheat for eggs lying. After 7 days, the adults 
were removed and the media were stored at the 
standard rearing conditions until adult’s emergency. 
Adults of 2-3 weeks old of the first generation were 
used for the present study.  
Insecticides: Deltamethrin (98%), permethrin, 
cypermethrin (96.62%)   and malathion (95%) as 
technical grad samples of pesticides were obtained 
from the National Company for Agrochemicals & 
Investment (Agrochem.), Egypt. 
Chemicals: All chemicals used were purchased 
from Sigma/Aldrich Company  
Susceptibility test  

Pesticide residual film technique was preformed 
according to (FAO, 1974) to determine the 
resistance level in EB colony comparing with the LS 
strain as a reference strain. A series of   insecticide 
concentrations dissolved in acetone (1 ml) were 
applied onto Whatman paper No. 1 which placed in 
Petri dishes (9 cm) and set aside for 15 min to allow 
solvent evaporation. Twenty adults (2-3 weeks old) 
from both colonies were transferred to each Petri-
dish. Each concentration was replicated three times 
and kept at 28 °C ±1, 70% ±5RH and 12:12hr 
photoperiod].  Mortality percentages were recorded 
after 24 hr of treatment and LC50  and LC90 values 
and  their confidence limits were calculated 
according to (Finney, 1971) using Ld-p Line® (a 
software program). 
Crude Enzyme preparation 

Adult beetles (2-3 weeks old) from each colony 
were homogenized in ice cold 0.1M sodium 
phosphate buffer (pH 7.4) contains 0.5 mM EDTA 
(1:10 w/v) for 20 sec two times. Then, the 
homogenates were centrifuged at 1000 rpm for 15 
min. After centrifugation, the resultant supernatants 
were filtrated through glass wool and re-
centerifugated at 10,000 rpm for 30 min. The 

resultant supernatants were used for the biochemical 
assays. 
Total esterase activity: The assay was performed 
according to (Van Asperen 1962). The reaction 
mixture (2.5ml) contains: 30 µl crude enzyme, 
sodium phosphate buffer (0.1M pH 7.4) and fast 
blue dye solution [2.15 mM α-naphthayl-acetate 
dissolved in acetone and mixed with 1.2 mM fast 
blue B slate (O-dianisidine) in phosphate buffer]. 
Absorbance was measured at wave length of λ450 nm 
after 15 minutes incubation period. The specific 
activity was expressed as Δ Optical density (OD) at 
λ450/mg protein/min.   
Carboxylesterase (CE) activity: CE was determined 
according to (Mendoza et al., 1971). A reaction was 
initiated by adding 0.02 M of indophenyl acetate 
dissolved immediately in acetone to solution of 0.05 
M tris-HCl and 30 µl of the crude enzyme. The 
absorbance was measured at λ412 nm after incubation 
at 37oC for 15 min. The specific activity was 
calculated as Δ Optical density (OD) at λ412/mg 
protein/min.    
Glutathion-S- transferease (GST)  activity: GST 
was determined according to the method of  ( 
Vessey and  Boyer, 1984)  The reaction mixture 
consists of 1.45 ml 5 mM glutathione in 0.1 M 
sodium phosphate buffer pH 7.5, 20 µl of 1-chloro-
2, 4-dinitrobenzene (CDNB 75 mM) in absolute 
ethanol and 30 µl of the crude enzyme. The changes 
of absorbance were measured continuously at 
λ345nm. The activity was expressed as Δ Optical 
density (OD) at λ345/mg protein/min.  
Acetylcholinesterase (AChE) activity: AChE was 
determined according to (Ellman et al. 1961). A 
three ml total volume reaction solution was 
containing:  10 mM dithiobis-(2 nitrobenzoic acid 
dissolved in 100 mM phosphate buffer pH 7.4, 75 
mM acetylthiocholine iodide and 50 µl of crude 
enzyme. After 30 min incubation at 37oC the optical 
density was measured at λ412 nm. The activity was 
calculated as ΔOD at λ412/min/mg protein. 
Protein concentration: Protein was measured 
according to the method of  (Lowry et al., 1951) 
using bovine serum albumin (BSA) as a standard. 
Esterase izozymes profile: Agar-starch-polyvinyl 
pyrolidine (PVP) poly vinyl gel electrophoresis was 
carried out according to the procedures described by 
(Shaw and Prasad, 1970). The gel plates [20*30 cm 
and thickness of 0.9 mm] consisting of PVP 1g and 
1g hydrolyzed starch dissolved in 10 ml electrode 
buffer [(0.07 M Tris and citric acid 0.007M 
(pH=8.3)] and 90 ml distilled water. Electrophoresis 
runs were performed at 4°C and 250 mV constant 
for 90 minutes. After the full set run,   gels were 
incubated for 30 min at room temperature and 
complete darkness in the staining buffer [l00 ml 
phosphate buffer (pH=7.0) containing 50mg fast 
blue RR salt (bis (4-benzamido-2,5-
dimethoxybenzenediazonium) zinc (II) chloride ) 



Alex. J. Agric. Sci.                                                                                        Vol. 62, No.4, pp. 331-340, 2017 

 333 

and  20 mg α-naphthyl acetate, and 20 mg β-
naphthyl acetate dissolved in l ml acetone]. Then, 
the plates were distained in distilled water until a 
clear background was appeared. The plates were 
subjected to analysis using PAST: Paleontological 
Statistics Software (http://palaeo-electronica.org). 

RESULTS 
Bioassay: The data of susceptibility tests showed 
that EB strain was significantly resistant to 
malathion compared with the LS strain with 
resistance ratios at LC50 (defined as LC50 resistant 
(EB)/LC50 susceptible (LS) = RR50) of 9.08 fold 
(Table1) and it was vigorously tolerant to 
deltamethrin (RR50=5.02 fold). Furthermore, the 
confidence limits of LC50’s were not overlapped. As 
a consequence of the different slopes and intercepts 
of deltamethrin and malathion regression lines of 
both strains, the RR ratios were varied at LC90 for 
both insecticides (Fig 1: c, d). The deltamethrin 
RR90 decreased to 2.98 fold compared with RR50, 
while a distinct increase was recorded with 
malathon (RR90 16.64 fold).  Meanwhile, ES strain 
was slightly tolerant to cypermethin compared with 
the LS strain with RR50 1.79 fold. The regression 
lines of both strains were crossed (Fig 1: a) and both 
the slopes and intercepts were not equals. The RR50 
and RR90 were greatly changed from 1.79 to 9.9 
fold, respectively. On the other hand, permethrin did 

not show any distinction between both strains 
because the LC50 were 0.778 for LS and 0.720 for 
EB with overlapped confidence limits at (0.05) 
significance level and approximately identical 
regression lines given that both intercepts and slopes 
were not varied considerably (Fig 1:b).   
Enzymes activity: Biochemical data are 
summarized in Table (2). The detoxification 
enzymes activity in adults of ES strain compared 
with LS one showed significant higher activity of 
carboxylesterase, (CE) (3.95*10-3 and 1.16*10-3) Δ 
OD at λ412/mg protein/min, respectively. As well, 
the same trend was recorded with total esterase and 
GST, since the activity were (1.2*10-2 and 5.3*10-2) 
Δ OD at λ450/mg protein/min and (6.44*10-3 and 
2.42*10-2) Δ OD at λ345/mg protein/min in LS and 
ES strains, respectively. Moreover, significant 
difference also was found in activity of the target 
site enzyme (AChE) between LS (8.41*10-4) and ES 
(2.96*10-3) ΔOD at λ412/min/mg protein. 
Accordingly, the detoxification enzymes activity 
were  4.27 times for total esterase, 3.4 for CE and  
3.75  for GST higher in ES population compared 
with LS strain.   
Esterase analysis Among seven identified esterase 
loci, five loci were migrated to cathode and two for 
anode (Figure 2).  

Table 1: Susceptibility of Sitopilus oryzae adults to the tested insecticides after 24hr exposure. 

Insecticide Strain 
LC50 

mg\ l 
Confidence 

limits 
*RR50  

LC90 

mg/l 
Confidence 

limits 
**RR90 

Slope         
± variance 

Chi2 

LS 2.960 2.40 - 3.69 -- 17.43 10.91 - 36.96 -- 1.68 ± 0.25 1.897 
Cypermethrin 

EB 5.030 3.61 - 8.09 1.79 172.58 61.66 -  1187.63 9.90 0.85 ± 0.14 1.72 
LS 0.230 0.15 - 0.33 -- 7.68 5.22 - 12.5 -- 0.84 ±0.07 0.33 

Deltamethrin 
EB 1.197 0.82 - 1.50 5.20 22.86 13.85 - 48.67 2.98 1.00 ± 0 .11 7.29 
LS 0.778 0.58 - 0.99 -- 9.35 6.59 - 15.18 -- 1.19 ± 0.12 3.12 

Permethrin 
EB 0.720 0.56 - 0.89 0.93 8.71 6.20 - 13.81 0.93 1.18  ± 0.11 3.33 
LS 0.250 0.16 - 0.33 -- 1.79 1.33 -3.01 -- 0.15 ± 0.23 5.23 

Malathion  
EB 2.270 1.79 -  3.08 9.08 29.79 15.53 - 87.82 16.64 1.15 ± 0.15 4.69 

LS: Laboratory-susceptible strain 
EB: El-Behera strain 
*RR50=Resistance ratio (LC50 of the EB strain/LC50 of LS strain) 
**RR90=Resistance ratio (LC90 of the EB strain /LC90 of LS strain) 

Table 2: Total esterase, acetylcholinesterase, carboxylesterse and Glutathion S-tranferase activity in 
Sitopilus oryzae adults of both laboratory-  susceptible (LS) and El-Behera field strains(EB). 

Strain 
LS  EB 

Emzyme 
Specific activity* 

(± SE) 
Specific activity*  

(± SE) 

AR** 

Total esterase 1.23 x 10-2  (0.1 x 10-3) 5.30 x 10-2 (5.1 x 10-4) 4.23 
Acetyle- cholinesterase 8.41 x 10-4  (4. 1 x 10-5) 2.96 x10-3 (6.8 x 10-5) 3.52 
Carboxylesterase 1.16 x 10-3 (2.2 x 10-5) 3.95 x 10-3 (1.1 x 10-4) 3.40 
Glutathion S- transferase 6.44 x 10-3 (1.0 x 10-3) 2.42 x 10-2  (5.0 x 10-4) 3.75 

*Specific activity = ΔOD/mg protein/min 
**AR=Specific activity of EB strain/Specific activity of LS strain  
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Deltamethrin Malathion 

Figure 1: Ld-p lines of Sitophilus oryzae adults to the tested insecticides Laboratory- Susceptible strain  
(      ) and El- Behera strain (- - -) 
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Figure 2: Esterase isozymes profile of Sitophilus oryzae adult of the laboratory susceptible (LS) and El-

Behera (EB) field strains (Agar-starch-polyvinyl pyrolidine electrophoresis gel stained with                   
α and ß naphthyl acetate). 

A common locus (Est1) was detected for all 
samples. Although, an extra locus (Est5) was 
detected in the LS weevils’ pattern compared with 
the resistant EB weevils, both strains were sharing 
four loci (Est.1, Est.2, Est.3 and Est.4) in the 
cathode direction. On the other hand, in the anode 
direction, two loci were identified in both strains 
pattern. In addition, variance in the staining 
intensity was observed between both strains and the 
loci size, noticeably, the staining intensity was 
darker in the resistant strain compared with the 
susceptible one. 

DISCUSSIONS 
According to bioassay data, ES strain 

developed resistant to malathion and vigor tolerance 
to deltamethrin but not to permethrin and only 
marginally to cypermethrin. Similarly, previous 
studies demonstrated that,   S. granaries from 
Aptain, Yugoslavia was resistant to malathion and 
deltamethrin with RR50 4.2 and 3.4 , respectively, 
while the same strain was entirely susceptible to 
cypermethrin (Kljajić and Perić, 2006). Also, 
resistant to malathion and deltamethrin were 
observed in  R. dominica from India  (Babu et al, 
2017). Distinctly malathion still the most available 
and acceptable pesticide for grain protection in 
Egypt (APC, 2017). Although pyrethroids are not 

incorporated in stored grain protection programs in 
Egypt, EB strain showed tolerance to deltamethrin 
and cypermethrin which underline the consequence 
of wheat importing. As researchers referred the 
unpredictable resistant distribution of S. zeamais  
Brazilian populations to the trading and local 
selection (Guedes et al, 1995 and Fragoso et al, 
2005). Apparently, the log dosage probit lines (Ldp 
lines) of EB and LS  strains  for malathion and 
deltamethrin were neither parallel nor possessed 
equal intercepts which suggest an alternation of 
detoxification enzymes qualitatively, and/or 
quantitatively or may be dissimilar enzymes 
involved in the detoxification process in both strains 
(Hardman et al , 1959 and Kuperman et al , 1961). 
Furthermore, these Ldp lines showed heterogeneity 
in EB population which proposes that, resistance is 
in a developing stage and alerts supposed increase in 
resistance level on the horizon. Additionally, these 
data is totally in harmony with the biochemical data, 
as the relatively high resistance ratios recorded with 
malathion and deltamethrin could be a consequence 
of biochemical transformations in EB strain that 
were observed as elevation in activity of total 
esterase, CE and GST as well AChE. Insecticide 
resistance in insects could be referring to three 
major mechanisms. First, the behavioral 
mechanism; which occurs as result of conversion in 
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insect habits towards the minimum exposure 
(Hemingway and Ranson, 2000) and (Lee and Lees, 
2001). Second, The physiological mechanism that 
includes the changes in penetration and 
transportation of the pesticide into the insect body 
(Scott, 1999). Third, the biochemical mechanism 
which is representing in metabolic resistance and 
the target site insensitivity ( Gao et al, 2006), 
(Konuş, 2015). Metabolic resistance includes the 
elevation or alternation in activity of some enzyme 
families; mixed function oxidase P450, esterase and 
glutathione S- transferase that lead to accelerate 
pesticide detoxification (Paine and Brooke, 2016). 
The resistance mechanism of elevation or 
alternation of detoxifying enzymes has contributed 
to a reduce of the available dose at the target site 
that is crucial to cause the lethal effect in an insect, 
while alternation of target site contributes to lose the 
binding between the insecticide molecule and its 
target (Panini et al, 2016). Esterase based resistance 
could be achieved as a result of qualitative and/or 
quantitative alternation causing enzyme 
overproduction or modifications of enzyme 
structure (Oppenoorth and van Asperen, 1960). Both  
malathion and  deltamethrin insecticides could be 
subjected for hydrolysis by esterase  (Konus, 2015)  
and thus the high activity of esterase which was 
detected in EB adults suggest that, esterase are 
involved in malathion and deltamethrin resistance 
mechanisms in this population. CE was found to 
attack the carboxylester moiety of malathion 
molecule (Matsumura and Brown, 1960) thus 
organophosphate resistance, which refers to CE is 
known as specific esterase mechanism. This 
mechanism was confirmed in most cases of 
malathion resistance in T. castaneum strains (Julio 
et al, 2017). Moreover, Pyrethroid resistance have 
been reported to be correlated to esterase in 
Tribolium castaneum  (Dyte and Rowlands 1968) 
and (Wool and Front 2002). Accordingly, in our 
case of study we may consider deltamethrin 
resistance and cypermethrin resistance partly lay on  
esterase as pyrethroids has been  found to be  
sequestered in the insect’s  haemolymph as 
consequence of  a high affinity binding site on 
carboxylesterase (Lee and Clark 1996)  and (Boyer 
et al, 2012). Moreover, esterase analysis indicated 
high degree of genetic polymorphism between EB 
and SL populations of S. oryzae. The results in line 
with that reported by (Coelho-Bortolo et al, 2016) in 
which genetic variance might be attributed to wide 
geographical distribution and importing of stored 
product commodities. Esterase isozymes in insects 
often show large polymorphism that resultant in 
strong selection pressure such as what was recorded 
in T. castaneum (Price, 1984) and O. surinamensis 
(Lee and Lees,2001) and  (Silva and Lapenta 2011). 
Our data suggested that esterase(s) are obviously 
involved in resistance to malation and deltamethin 

in EB strain. However, other studies revealed a 
negative relation between pyrethroid resistance and 
esterase activity patterns (Han et al, 1998) and( Ali 
and Turner 2001)  accordingly other mechanisms in 
particularly target site insensitivity may be involved 
in decreasing susceptibility to deltamethrin and 
cypermethrin in EB strain (Collins, 1990). The 
development of resistance in EB strain to 
cypermethrin and deltamethrin but not to permethrin 
might be due to their distinct mode of action which 
also correlated to absence (permethrin) or presence 
of cyano group (cypermethin and deltamethrin). 
Furthermore, AChE as a non metabolic resistance 
known as a target site insensitivity mechanism  
found to be related to malathion resistance (Guedes 
and Kun Yan Zhu 1998) and (Lee and Lees 2001). 
Malathion molecule is a competitive inhibitor 
analogous to the molecule of Ach, the substrate of 
AChE and the resistance mechanism occurs due to 
mutation in the target protein (Fournier and Mutero, 
1994). Also, GST is involved in organophosphoates 
resistance through O- dealkylation or O-dearylation 
(Hayes and Wolf 1990) and  (Huang et al, 1998) 
detoxification of metabolites as a minor mechanism 
(Hemingway et al, 1991) and dehydrochlorination 
(Clark and Shamaan, 1984). While dissimilar 
mechanisms found to be associated with pyrethroid 
resistance since GST eliminate lipid peroxidation 
products which is initiated by pyrethroids via 
preventing oxidation which is the reason of insect 
damage (Vontas et al., 2001) and/or through a 
sequestration mechanism by binding pyrethroid 
molecules (Kostaropoulos et al, 2001). Moreover, 
GST may have a role as binding proteins increasing 
the activity of other detoxifying enzymes as esterase 
(Grant and Matsumura 1989) and (Kostaropoulos et 
al, 2001). In conclusion, this study results indicated 
that EB population developed resistance to 
malathion, deltamithrin and slightly to cypermethin 
but not to permetrin.  There was genetic 
polymorphism between EB and SL populations. 
These changes and the resistance appear to be 
directly related to selection pressure due to 
continuous application of malathion and ultimately 
related to wheat importing. The mechanism of 
resistance suggested being biochemical alteration. 
These results suggest that EB population became 
resistant but the resistance is still in its developing 
stages which underline the importance of periodic 
monitoring as the foremost step in pest control. 
However, further studies using synergists and 
molecular techniques are required to determine the 
specific resistance mechanism and the possible 
countermeasures precisely.  
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