Toxicity of Certain IGRs and Conventional Insecticides against Cotton Leafworm and Their Effects on the Development and Haemocyte Counts

Abstract

Sahar E. Eldesouky- Samah M. Hassan and Doaa A. Farag Plant Protection Research Institute, Arc, Al Sabhia, Alexandria, Egypt. BSTRACT Toxicity of two insect growth regulators (IGRs) (novaluron and chlorfluazuron) and two conventional insecticides (chlorpyrifos and lambda-cyhalothrin) were evaluated against $2^{\text {nd }}$ and $4^{\text {th }}$ instars larvae of cotton leafworm (CLW), Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Joint toxic action of tested IGRs and insecticides against $4^{\text {th }}$ instar larvae of CLW were also evaluated. The sublethal effects of tested insecticides on the development and haemocyte counts were also carried out. Results showed that, chlorfluazuron was the most toxic against both $2^{\text {nd }}$ and $4^{\text {th }}$ larval instars with LC_{50} values 0.12 and $1.4 \mathrm{mg} / \mathrm{L}$ after 96 hrs of treatment followed by chlorpyrifos which is followed by novaluron. Lambda-cyhalothrin recorded the least toxicity against both $2^{\text {nd }}$ and $4^{\text {th }}$ larval instars with LC_{50} values 0.86 and $4.6 \mathrm{mg} / \mathrm{L}$ after 96 hrs of treatment. Potentiating effect was obtained when chlorpyrifos was mixed with novaluron or chlorfluazuron each at LC_{25} with co-toxicity factors (CTFs) 42.85 and 46.66 , respectively. All other mixtures of chlorpyrifos with novaluron or chlorfluazuron resulted in additive effects. All tested insecticides at concentrations equivalent to LC_{10} and LC_{25} significantly reduced larval body weights, percentage of pupation, pupal mean weight and percentage of adult emergence. Total haemocyte count (THC) was significantly decreased and reached to $34.6,45.2,72.3$ and 87.6×10^{3} cell $/ \mathrm{mm}^{3}$ after 24 hrs from treatment with novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin at concentration equivalent to LC_{25}, respectively, compared to 106.4×10^{3} cell $/ \mathrm{mm}^{3}$ in control. All treatments with tested IGRs and insecticides decreased the percentages of Prohaemocytes (PRs) and Spherulocytes (SPs) after 24, 48, 72 and 96 hrs of treatment compared to control. In contrast, the percentages of Granulocytes (GRs) and Oenocytoids (OEs) were slightly increased. While in novaluron and chlorfluazuron treatments, Plasmatocytes (PLs) were significantly increased and reached to 48.3 and 49.2%, respectively, it was decreased by chlorpyrifos and lambdacyhalothrin treatments and reached to 39.6 and 40.5%, respectively, after 24 hrs compared to 44.8% in control. Finally, the present data suggests that the use of novaluron and chlorfluazuron in binary mixtures with conventional insecticides particularly chlorpyrifos can reduce the rate of used insecticides and consequently reduce environmental pollution. Also, sublethal concentrations of tested insecticides can negatively affect the population of CLW.

Keywords: Cotton leafworm; Insect growth regulators; Insecticides; Binary mixtures; Biological parameters; Total haemocyte count; Differential haemocyte count.

INTRODUCTION

Cotton is one of the most important crops and plays a vital role in social and economic affairs of the world. Cotton plants are liable to be attacked by many pests from the seedling to harvest stage. Among these pests, CLW is a severe polyphagous insect pest causing various ravages not only for cotton plants but also for several cultivated crops, vegetables, ornamentals and orchard trees (Matthews and Tunstall, 1994).

Chemical control is an important tool for CLW management because non-chemical control measures alone usually do not adequately prevent economic damage. Unfortunately, CLW has developed resistance to organophosphates, carbamates and synthetic pyrethroids due to the unwise use of these insecticides (Abo El-Ghar et al., 1986; Abdallah, 1991; El-Zemaity et al., 2003;

Abo-Elghar et al., 2005; Abou-Taleb, 2010). In addition, the environmental hazards of conventional insecticides necessitate introduce of other new insecticides from different chemical groups with different modes of action alone or in mixtures. To overcome these problems and achieving an effective control of CLW with lower doses of used insecticides many researchers resorted to the insecticide mixtures with other control agents such as IGRs (Ghoneim, 2002; Kandil et al., 2006; Abdel-Rahman and AbouTaleb, 2007; Ghoneim et al., 2012; Abd El-Razik and Mostafa, 2013).

The advantages of IGRs make them highly desirable in integrated pest management programs. They do not persist long in the environment due to their rapid biodegradation. In addition, they exhibit low toxicity for non-target organisms (Zibaee et
al., 2011). The IGRs accomplished their mode of action by interfering with development, disrupting the normal activity of the endocrine system, reproduction or metamorphosis of the target insects (Kai et al., 2009). The IGRs include juvenile hormone (JH) mimics, ecdysone agonists and chitin synthesis inhibitors (CSIs) (Tunaz and Uygun, 2004). CSIs benzoylphenylureas insecticides such as novaluron and chlorfluazuron act on incorporation of N -acetyl glucosamine monomer into chitin in the integument. This leads to the formation of abnormal new cuticle and death of the insect (Nakagawa et al., 1993, 1996). In addition, previous studies have documented the effect of IGRs on the haemolymph components of insects (Zhu, et al., 2012; Zibaee et al., 2012; Abou-Taleb et al., 2015; Ghoneim et al., 2015). Haemocytes play multifunctional roles such as coagulation, phagocytosis, encapsulation, nodule formation, detoxification and secretion of humeral immunity factors may render them more sensitive than other cell towards insecticides and internal/external factors (Gupta et al., 2005; Saha, 2011).

Therefore, the present work was performed to investigate the toxicity and joint toxic action of novaluron and chlorfluazuron with certain conventional insecticides (chlorpyrifos and lambda-cyhalothrin) against the $2^{\text {nd }}$ and $4^{\text {th }}$ instars larvae of CLW. In addition, the sublethal effects of tested insecticides on the larval and pupal development durations, larval and pupal weights, percentages of pupation and adult emergence of CLW were evaluated. The impact of tested insecticides at concentration equivalent to LC_{25} on the total and differential haemocyte counts of CLW larvae was also tested.

MATERIALS AND METHODS

Experimental insect: Egg masses of CLW were reared on the Department of Cotton Pesticides Bioassay Research, Plant Protection Research Institute, ARC, Al Sabhia, Alex., Egypt. The newly hatched larvae were fed on fresh castor bean leaves, Ricinus communis L., as a natural diet under experimental conditions $\left(27 \pm 2{ }^{\circ} \mathrm{C}, 65 \pm 5 \%\right.$ RH) for several generations without exposure to insecticides as mentioned by (El-Defrawi et al., 1964).

Tested insecticides: Novaluron (Equo ${ }^{\circledR}$ 10\% EC) was produced by Isagro Co., Italy. Chlorfluazuron (Topron ${ }^{\circledR} 5 \%$ EC) and chlorpyrifos (Pestban ${ }^{\circledR} 48 \%$ EC) were produced by Agrochem Co., Alexandria. Lambda-Cyhalothrin (Lambada ${ }^{\circledR}$ 5% EC) was produced by Dow AgroSciences Co., England.

Toxicity test: Toxicity of novaluron, chlorfluazuron, chlorpyrifos and lambdacyhalothrin were determined using the leaf dip
bioassay method (Eldefrawi et al., 1964). A series of the insecticides concentrations were processed in distilled water. Homogenous castor bean leaf pieces were immersed in each insecticide concentration solution for 10 seconds, dried at room temperature before being offered to newly ecdysed $2^{\text {nd }}(2.3 \pm 0.1 \mathrm{mg} /$ larvae $)$ and $4^{\text {th }}(46.6 \pm 0.4$ $\mathrm{mg} /$ larvae) instar larvae. Untreated larvae were fed on castor bean leaf pieces immersed in distilled water only. Each treatment was replicated four times with 10 larvae per replicate. After 24 hrs, fresh castor bean leaf pieces were added to each replicate. Mortality percentages were recorded after 96 hrs of exposure, corrected using the Abbott equation (Abbott, 1925) and subjected to probit analysis according to (Finney, 1971). LC $_{10}$, LC $_{25}$ and LC_{50} values, their confidence limits and slope \pm SE were calculated.

Joint toxic action studies: Binary mixtures of novaluron or chlorfluazuron with chlorpyrifos and lambda-cyhalothrin against the $4^{\text {th }}$ instar larvae of CLW were investigated after 96 hrs of exposure. LC_{25} of novaluron or chlorfluazuron were mixed with LC_{25} or LC_{10} of chlorpyrifos and λ cyhalothrin. Also, LC_{10} of novaluron or chlorfluazuron were mixed with LC_{25} of chlorpyrifos and λ-cyhalothrin. Three control groups were subjected to calculate the expected mortalities. The joint action of the different mixtures was expressed at the co-toxicity factors (CTFs), calculated by the equation given by Mansour et al., (1966), as follows:

This factor was used to categorize the results into three categories as follow: co-toxicity factors $\geq+20$ meant potentiation; co-toxicity factors <-20 meant antagonism; and co-toxicity factors between -20 and +20 meant additive effect.

Effects of sublethal concentrations of tested insecticides on some biological parameters of CLW:The sublethal effects of novaluron, chlorfluazuron, chlorpyrifos and lambdacyhalothrin at their LC_{10} and LC_{25} equivalent concentrations on some biological parameters of CLW were evaluated. Homogenous castor bean leaves were immersed in each insecticide LC_{10} and LC_{25} equivalent concentrations for 10 seconds, dried at room temperature then introduced to the larvae. One hundred newly ecdysed $2^{\text {nd }}$ instar larvae in each replicate were used and provided with treated leaves. The untreated larvae were fed on leaves immersed in distilled water only. Each treatment and control was replicated four times. Surviving larvae were transferred to jars containing fresh untreated leaves after 48 hrs and observed daily for pupation and adult emergence. Larval and pupal development durations were determined.

Larval and pupal weights, percentages of pupation and adult emergence were also recorded.

Haemolymph studies: Castor bean leaves were soaked in the determined LC_{25} equivalent concentration for each of tested insecticides. One hundred $4^{\text {th }}$ instar larvae were used in each replicate and exposed to the treated leaves. Each treatment was replicated four times. Surviving larvae were subjected directly to total and differential haemocyte counts after $24,48,72$ and 96 hrs from treatment.

Total haemocyte count (THC): To determine the total haemocyte count, $20 \mu \mathrm{~L}$ of the haemolymph was diluted $1: 9(\mathrm{v} / \mathrm{v})$ in chilled saline $\left(7 \mathrm{gL}^{-1} \mathrm{NaCl}, 0.2 \mathrm{gL}^{-1} \mathrm{KCl}, 0.2 \mathrm{gL}^{-1} \mathrm{CaCl}_{2}, 0.1 \mathrm{gL}^{-1}\right.$ $\mathrm{MgCl}_{2}, 0.15 \mathrm{gL}^{-1} \mathrm{NaHCO}_{3}, 0.2 \mathrm{gL}^{-1} \mathrm{NaH}_{2} \mathrm{PO}_{4}$, Glucose $7.0 \mathrm{gL}^{-1}$), and aliquots were transferred to a Neubauer haemocytometer. Cells were counted using a light microscope and number of total haemocytes per cubic millimeter $\left(\mathrm{mm}^{3}\right)$ was calculated according to the formula of Jones (1962), as follows:

Number of haemocyte counted per chamber X dilution X depth factor

 Number of $1 \mathbf{~ m m}$ squares counted Where the depth factor is usually 10 .Differential haemocyte count (DHC): Haemolymph preparations were stained, according to Arnold and Hinks (1979). The haemolymph was smeared on clean glass slides, allowed to dry for 1 minute, and fixed for 2 minutes with drops of absolute methyl alcohol. Fixed cells were stained with Giemsa's solution (diluted 1:20 in distilled water) for 20 minutes, washed several times with tap water, and dipped in distilled water. The stained smears were air-dried and mounted in DPX with slip cover. The haemocytes were viewed under light microscope at magnification 1000X and 100 cells per slide were examined. The cell shape, cytoplasmic ratio, cytoplasmic inclusions and nucleus shape were used for classification of haemocytes using the classification scheme of Brehélin and Zachary (1986). The percentages of haemocyte types were calculated by the formula:

Number of each haemocyte type X 100

Total numbers of haemocytes examined
Haemocytes deformations: for recording the haemocytes deformities of the treated larvae, photomicrographs were obtained by using a light microscope with a camera at a magnification 1000 X.

Statistical analysis: The SAS 8.0 software was used for analysis of the data obtained from each experiment and the means were tested for significant differences using analysis of variance (ANOVA) test (LSD at $\mathrm{P}<0.05$) (SAS Statistical software, 1999).

RESULTS AND DISCUSSION

Toxicity of novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin against $2^{\text {nd }}$ and $4^{\text {th }}$ instars larvae of CLW: Data presented in (Table1) demonstrated the $\mathrm{LC}_{10}, \mathrm{LC}_{25}$ and LC_{50} values, their confidence limits and slope $\pm \mathrm{SE}$ for the tested insecticides against the $2^{\text {nd }}$ instar larvae of CLW. Results showed that, toxicity of chlorfluazuron $\left(\mathrm{LC}_{50}=0.12 \mathrm{mg} / \mathrm{L}\right)$ is 7.2 times more toxic than λ-cyhalothrin $\left(\mathrm{LC}_{50}=0.86 \mathrm{mg} / \mathrm{L}\right), 2.9$ times more toxic than novaluron $\left(\mathrm{LC}_{50}=0.35 \mathrm{mg} / \mathrm{L}\right)$ and 2.3 times more toxic than chlorpyrifos $\left(\mathrm{LC}_{50}=\right.$ $0.28 \mathrm{mg} / \mathrm{L}$) against the $2^{\text {nd }}$ instar larvae after 96 hrs of treatment. Chlorpyrifos is 3.1 more toxic than λ cyhalothrin. Toxicity of chlorpyrifos and novaluron against the $2^{\text {nd }}$ instar larvae is comparable.

Concerning the toxicity of tested insecticides against the $4^{\text {th }}$ instar larvae, same trend of results was recorded (Table 2). Chlorfluazuron is the most toxic $\left(\mathrm{LC}_{50}=1.4 \mathrm{mg} / \mathrm{L}\right)$, followed by chlorpyrifos $\left(\mathrm{LC}_{50}=2.5 \mathrm{mg} / \mathrm{L}\right)$ and novaluron $\left(\mathrm{LC}_{50}=2.8 \mathrm{mg} / \mathrm{L}\right)$ after 96 hrs of treatment. Lambda-cyhalothrin recorded the least toxicity against the $4^{\text {th }}$ instar larvae with LC_{50} value of $4.6 \mathrm{mg} / \mathrm{L}$ after 96 hrs of treatment. From these results, it is clear that $4^{\text {th }}$ instar larvae were less susceptible than the $2^{\text {nd }}$ instar larvae. Similar results were observed by Kandil et al., (2006) where they reported that, chlorfluazuron achieved high toxicity to CLW compared to chlorpyrifos and profenofos. In addition, Abdien et al., (2016) recorded a higher toxicity of chlorpyrifos compared to λ-cyhalothrin against the $4^{\text {th }}$ instar larvae of CLW. Furthermore, Abdel-Rahman and Abou-Taleb, (2007) recorded higher toxicity of chlorfluazuron compared to spinosad and spinetoram against the $2^{\text {nd }}$ instar larvae of CLW after 72 hrs of treatment. Comparable toxicity was observed between chlorfluazuron and lufenuron against the $4^{\text {th }}$ instar larvae of CLW (Abou-Taleb et al., 2015).

Joint toxic action of novaluron or chlorfluazuron with chlorpyrifos and lambdacyhalothrin against $4^{\text {th }}$ instar larvae of CLW: To determine the effect of binary mixtures of novaluron or chlorfluazuron (LC_{25} and LC_{10}) with chlorpyrifos or lambda-cyhalothrin (LC_{25} and LC_{10}), the expected mortality can be ranged between 50% or 35%, when the mixture was used. Since the average weights of the $4^{\text {th }}$ instar larvae used in each test varied, thus, the expected mortality for the concentrations applied in every test varied accordingly (Abdel-Rahman and Abou-Taleb, 2007). So, the expected mortality was calculated for each insecticide in the mixture in every test by treating the larvae by each one alone.

Table1: Toxicity of novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin against the $2^{\text {nd }}$ instar larvae of CLW after 96 hrs of treatment:

Insecticide	$\mathbf{L C}_{\mathbf{1 0}}\left(\mathbf{m g ~ L}^{-1}\right)$ Confidence limits	$\mathbf{L C}_{\mathbf{2 5}}\left(\mathbf{m g ~ L}^{-1}\right)$ Confidence limits	$\mathbf{L C}_{\mathbf{5 0}}\left(\mathbf{m g ~ L}^{-\mathbf{1}}\right)$ Confidence limits	Slope $\pm \mathbf{S E}^{*}$
Novaluron	0.07	0.17	0.35	
	$0.05-0.09$	$0.14-0.20$	$0.24-0.46$	1.2 ± 0.14
Chlorfluazuron	0.02	0.07	0.12	
	$0.01-0.03$	$0.05-0.08$	$0.08-0.16$	1.8 ± 0.16
Chlorpyrifos	0.09	0.16	0.28	
	$0.06-0.12$	$0.14-0.18$	$0.24-0.32$	1.4 ± 0.17
λ-Cyhalothrin	0.19	0.38	0.86	

*SE means Standard Error
Table2: Toxicity of novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin against the $4^{\text {th }}$ instar larvae of CLW after 96 hrs of treatment:

Insecticide	$\mathbf{L C}_{10}\left(\mathbf{m g ~ L}^{-1}\right)$ Confidence limits	$\mathbf{L C}_{\mathbf{2 5}}\left(\mathbf{m g ~ L}^{-1}\right)$ Confidence limits	$\mathbf{L C} \mathbf{5 0}_{\mathbf{0}}\left(\mathbf{m g ~ L}^{-1}\right)$ Confidence limits	Slope $\pm \mathbf{S E}^{*}$
Novaluron	0.7	1.6	2.8	
	$0.5-0.8$	$1.4-1.8$	$2.6-3.2$	2.4 ± 0.23
	0.3	0.7	1.4	
Chlorfluazuron	$0.1-0.4$	$0.4-0.8$	$1.2-1.6$	2.3 ± 0.21
	0.5	1.2	2.5	
Chlorpyrifos	$0.4-0.6$	$1.1-1.5$	$2.3-2.8$	1.8 ± 0.22
	0.9	2.4	4.6	
λ-Cyhalothrin	$0.8-1.2$	$2.1-2.7$	$4.2-5.2$	2.1 ± 0.23

*SE means Standard Error
Therefore, the expected mortality for the mixture of two insecticides was the sum of the mortalities of each of the concentrations used in the mixture. The joint toxic action of novaluron or chlorfluazuron with chlorpyrifos or λ-cyhalothrin at different concentrations after 96 hrs of exposure is shown in (Table 3). It is clear that, the potentiating effect was obtained when chlorpyrifos was mixed with novaluron or chlorfluazuron each at LC_{25} with CTFs 42.85 and 46.66 , respectively. All other mixtures of chlorpyrifos with novaluron or chlorfluazuron resulted in additive effects with CTFs ranged between 11.10 to 18.16 . All mixtures of λ-cyhalothrin with novaluron or chlorfluazuron each at LC_{10} or LC_{25} resulted to an additive effect with CTFs ranged between -9.11 to 12.50 . These results agree partially with Radwan et al., (2009) which reported that, mixtures between chlorpyrifos with chlorfluazuron at different mixing ratios exhibited potentiating action. In addition, Ghoneim et al., (2012) reported that, while mixtures of chlorpyrifos with the IGRs hexaflumuron or triflumuron resulted in potentiation effects, mixtures of chlorpyrifos with the IGR chlorfluazuron resulted in additive effect against resistant field population of the CLW. All λ cyhalothrin mixtures with the tested IGR compounds resulted in an additive effect. In this point, results of the present study differ with Sufian et al., (2013) where they reported that, mixtures of
the pyrethroids insecticides deltamethrin or bifenthrin with chlorfluazuron showed antagonistic effect on Spodoptera litura larvae.
Sublethal effects of tested insecticides on some biological parameters of CLW: In the field some insects may be exposed to sublethal concentrations of the applied insecticides which can result in sublethal effects on insect pests. In the present study, sublethal effects of novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin at concentrations equivalent to LC_{10} and LC_{25} on some biological parameters of CLW larvae were carried out and results are shown in (Tables 4 and 5). During the observation period, all treatments significantly reduced the mean larval weights at a concentration dependent manner compared to control. After 10 days of treatment, the mean larval weight reached to $129.4,125.8,140.2$ and 145.5 mg /larva when larvae were exposed to novaluron, chlorfluazuron, chlorpyrifos and λ-cyhalothrin at concentrations equivalent to LC_{25}, respectively, compared to $189.2 \mathrm{mg} /$ larva in control. The mean larval weights reached to $437.4,424.8,453.6$ and $478.5 \mathrm{mg} /$ larva when the larvae were exposed to the same treatments after 15 days, respectively, compared to $610.6 \mathrm{mg} /$ larva in control (Table 4).

Table 3: Joint toxic action of novaluron or chlorfluazuron with chlorpyrifos and lambdacyhalothrin against the $4^{\text {th }}$ instar larvae of CLW after 96 hrs of treatment:

Mixtures	Concentration levels	Expected (\%) mortality	Observed (\%) mortality	Cotoxicity factor*
$\begin{aligned} & \text { Novaluron } \\ + & \text { Chlorpyrifos } \end{aligned}$	$\mathrm{LC}_{25}+\mathrm{LC}_{25}$	46.67	66.67	42.85
	$\mathrm{LC}_{25}+\mathrm{LC}_{10}$	36.67	43.33	18.16
	$\mathrm{LC}_{10}+\mathrm{LC}_{25}$	30.00	33.33	11.10
$\begin{gathered} \text { Novaluron } \\ +\lambda \text {-Cyhalothrin } \end{gathered}$	$\mathrm{LC}_{25}+\mathrm{LC}_{25}$	43.33	46.67	7.71
	$\mathrm{LC}_{25}+\mathrm{LC}_{10}$	40.00	36.67	-8.33
	$\mathrm{LC}_{10}+\mathrm{LC}_{25}$	36.67	33.33	-9.11
Chlorfluazuron + Chlorpyrifos	$\mathrm{LC}_{25}+\mathrm{LC}_{25}$	50.00	73.33	46.66
	$\mathrm{LC}_{25}+\mathrm{LC}_{10}$	40.00	50.00	15.39
	$\mathrm{LC}_{10}+\mathrm{LC}_{25}$	36.67	43.33	18.16
Chlorfluazuron $+\lambda$-Cyhalothrin	$\mathrm{LC}_{25}+\mathrm{LC}_{25}$	53.33	60.00	12.50
	$\mathrm{LC}_{25}+\mathrm{LC}_{10}$	33.33	36.67	10.02
	$\mathrm{LC}_{10}+\mathrm{LC}_{25}$	32.00	34.00	6.25

*Cotoxicity factor $=[($ observed (\%) mortality- expected (\%) mortality)/expected (\%) mortality] $\times 100$ (Mansour et al., 1966).

When the $2^{\text {nd }}$ instar larvae were exposed to novaluron, chlorfluazuron, chlorpyrifos and λ cyhalothrin at concentrations equivalent to LC_{25}, the average time to pupation was $22.7,23.9,22.3$ and 21.2 days, respectively, compared to 17.4 days in control (Table 4). The two IGR compounds, novaluron and chlorfluazuron, at concentrations equivalent to LC_{25} had the highest effect on the percentage of pupation. The percentage of pupation was 36.2 and 32.8% at LC_{25} of novaluron and chlorfluazuron compared to 92.4% in control. Chlorpyrifos and λ-cyhalothrin at concentrations equivalent to LC_{10} had the least effect on \% pupation, where it was 84.6 and 87.2%, respectively (Table 4).

As shown in Table (5), all treatments significantly reduced the pupal mean weight compared to control treatment. The weight averages of pupae were $248.7,243.5,273.2$ and $278.3 \mathrm{mg} /$ pupa when the $2^{\text {nd }}$ instar larvae were exposed to novaluron, chlorfluazuron, chlorpyrifos and λ-cyhalothrin at concentrations equivalent to LC_{10}, respectively, compared to $289.3 \mathrm{mg} /$ pupa in control. While, in the LC_{25} treatments, pupae weight averages were $223.4,218.6,260.8$ and $264.7 \mathrm{mg} / \mathrm{pupa}$, when the larvae were exposed to the same insecticides, respectively. Reduction in the adult emergence was significantly achieved by all treatments where it was 52.4, 46.3, 73.8 and 79.4% in the LC_{10} of novaluron, chlorfluazuron, chlorpyrifos and λ-cyhalothrin treatments, respectively, compared to 86.7% in the control treatments. The LC_{25} of novaluron and chlorfluazuron achieved the highest reduction in the adult emergence, where it was 38.2 and 32.6%, respectively (Table 5). On the other hand, pupal duration did not differ significantly in all insecticides treatments compared to control treatment (Table 5).

However, results of the present study agreed with Abdel-Rahman et al., (2007) where they reported that, when the $3^{\text {rd }}$ instar larvae of CLW were treated with lufenuron larvae ceased feeding within 48 hrs and lead to reduction in larval mean weight. Perveen (2000) reported that, at lethal dosages of chlorfluazuron the development of different CLW instars, moulting to pupae and emergence into adults, larval and pupal weights were adversely affected. Novaluron at sublethal concentrations was found to reduce average larval weight, average time to the pupation, percentage of pupation, pupal mean weight and percentage of adult emergence (Metayi et al., 2015). Also, Nasr et al., (2010) found that buprofezin and pyriproxyfen decreased body weight, extended the duration of larval and pupal development, and reduced the pupation of CLW. Adel (2012) recorded an antifeedant effect for lufenuron against CLW larvae which affects all biological parameters of treated larvae. This may be the main reason for larval and pupal weight reduction.

Effect of tested insecticides on THC: As shown in Table (6), THC was significantly decreased and reached to $34.6,45.2,72.3$ and $87.6 \times 10^{3} \mathrm{cell} / \mathrm{mm}^{3}$ after 24 hrs from treatment with novaluron, chlorfluazuron, chlorpyrifos and lambdacyhalothrin, respectively, compared to 106.4×10^{3} cell $/ \mathrm{mm}^{3}$ in control. Also, THC was decreased and reached to $25.2,32.4,48.6$ and $56.3 \times 10^{3} \mathrm{cell} / \mathrm{mm}^{3}$ compared to 67.3×10^{3} cell $/ \mathrm{mm}^{3}$ in control, 43.7 , $58.4,60.6$ and $66.5 \times 10^{3} \mathrm{cell} / \mathrm{mm}^{3}$ compared to $77.2 \times 10^{3} \mathrm{cell} / \mathrm{mm}^{3}$ in control and reached to 62.3 , $75.6,83.2$ and 98.4×10^{3} cell $/ \mathrm{mm}^{3}$ compared to $105.8 \times 10^{3} \mathrm{cell} / \mathrm{mm}^{3}$ in control when the larvae were exposed to the same treatments after 48,72 and 96 hrs, respectively.

Table 4: Effect of novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin when applied to the $2^{\text {nd }}$ instar larvae of CLW on the larval weight gain, larval duration and percentage of pupation:

Insecticide	$\begin{aligned} & \text { Conc. } \\ & \left(\mathrm{mg} \mathrm{~L}^{-1}\right) \end{aligned}$	Mean weight (mg/larva) \pm SE after different days of treatment			Larvalduration(days) \pm SE	Pupation$(\%) \pm \mathbf{S E}$
		5	10	15		
Control	-	$48.7{ }^{\text {a }} \pm 1.5$	$189.2^{\text {a }} \pm 3.2$	$610.6{ }^{\text {a }} \pm 5.9$	$17.4^{\text {c }} \pm 1.3$	$92.4{ }^{\text {a }} \pm 1.2$
Novaluron	0.07	$41.4{ }^{\text {b }} \pm 2.8$	$165.3^{\text {c }} \pm 3.0$	$518.2^{\text {d }} \pm 4.5$	$18.6^{\text {b }} \pm 1.4$	$58.6^{\text {d }} \pm 1.0$
	0.17	$35.3^{\text {c }} \pm 1.6$	$129.4{ }^{\text {e }} \pm 2.7$	$437.4^{\mathrm{f}} \pm 5.3$	$22.7^{\text {a }} \pm 0.8$	$36.2^{\text {e }} \pm 1.5$
Chlorfluazuron	0.02	$40.2^{\text {b }} \pm 1.9$	$162.9^{\text {c }} \pm 4.2$	$509.3{ }^{\text {d }} \pm 3.8$	$18.3{ }^{\text {b }} \pm 1.5$	$52.4{ }^{\text {d }} \pm 1.6$
	0.07	$33.7^{\text {c }} \pm 2.1$	$125.8^{\text {e }} \pm 3.6$	$424.8{ }^{\text {f }} \pm 4.6$	$23.9{ }^{\text {a }} \pm 1.7$	$32.8{ }^{\text {e }} \pm 1.3$
Chlorpyrifos	0.09	$42.0{ }^{\text {b }} \pm 1.4$	$172.3^{\text {b }} \pm 2.4$	$540.6{ }^{\text {c }} \pm 5.2$	$17.8^{\text {c }} \pm 1.6$	$84.6{ }^{\text {b }} \pm 1.4$
	0.16	$40.4{ }^{\text {b }} \pm 1.3$	$140.2^{\mathrm{d}} \pm 3.8$	$453.6{ }^{\text {e }} \pm 5.7$	$22.3^{\text {a }} \pm 1.2$	$65.3^{\mathrm{c}} \pm 1.6$
λ-Cyhalothrin	0.19	$43.8{ }^{\text {b }} \pm 1.6$	$177.6^{\text {b }} \pm 2.9$	$564.2{ }^{\text {b }} \pm 4.8$	$16.4{ }^{\text {d }} \pm 1.4$	$87.2^{\text {b }} \pm 1.7$
	0.38	$41.6^{\mathrm{b}} \pm 2.3$	$145.5^{\text {d }} \pm 4.3$	$478.5^{\mathrm{e}} \pm 3.6$	$21.2^{\text {a }} \pm 1.8$	$68.7^{\text {c }} \pm 1.0$

Note: Means followed by the same letter in the same column are not significantly different (p<0.05, LSD test).
SE: Standard Error.
Table 5: Effect of novaluron, chlorfluazuron, chlorpyrifos and lambda-cyhalothrin when applied to the $2^{\text {nd }}$ instar larvae of CLW on the pupal weight gain, pupal duration and percentage of adult emergence:

Insecticide	Conc. $\left(\mathbf{m g ~ L ~}^{-1}\right)$	Pupal mean weight $(\mathbf{m g} / \mathbf{p u p a}) \pm \mathbf{S E}$	Pupal duration (days) $\pm \mathbf{S E}$	\% Adult emergence \pm SE
Control	-	$289.3^{\mathrm{a}} \pm 6.4$	$9.8^{\mathrm{a}} \pm 0.7$	$86.7^{\mathrm{a}} \pm 2.4$
	0.07	$248.7^{\mathrm{d}} \pm 5.6$	$9.3^{\mathrm{a}} \pm 0.5$	$52.4^{\mathrm{c}} \pm 1.8$
Novaluron	0.17	$223.4^{\mathrm{e}} \pm 6.3$	$9.7^{\mathrm{a}} \pm 0.5$	$38.2^{\mathrm{e}} \pm 2.6$
	0.02	$243.5^{\mathrm{d}} \pm 5.2$	$9.3^{\mathrm{a}} \pm 0.4$	$46.3^{\mathrm{d}} \pm 1.7$
Chlorfluazuron	0.07	$218.6^{\mathrm{e}} \pm 4.8$	$9.6^{\mathrm{a}} \pm 0.7$	$32.6^{\mathrm{e}} \pm 1.5$
	0.09	$273.2^{\mathrm{b}} \pm 5.8$	$9.7^{\mathrm{a}} \pm 0.6$	$73.8^{\mathrm{b}} \pm 2.2$
Chlorpyrifos	0.16	$260.8^{\mathrm{c}} \pm 4.9$	$9.4^{\mathrm{a}} \pm 0.5$	$54.3^{\mathrm{c}} \pm 1.4$
	0.19	$278.3^{\mathrm{b}} \pm 6.2$	$9.8^{\mathrm{a}} \pm 0.6$	$79.4^{\mathrm{b}} \pm 2.3$
-Cyhalothrin	0.38	$264.7^{\mathrm{c}} \pm 4.6$	$9.5^{\mathrm{a}} \pm 0.4$	$58.2^{\mathrm{c}} \pm 1.2$

Note: Means followed by the same letter in the same column are not significantly different ($\mathrm{p}<0.05$, LSD test).
SE: Standard Error.

In the present study, the decrease in the haemocyte numbers of treated larvae may be due to nodulation and encapsulation as well as degranulation of some cell types or the inhibition of the brain hormone secretion (Abd El-Aziz and Awad, 2010). These results agreed with Abou-Taleb et al., (2015), where they found that lufenuron and chlorfluazuron caused the highest decrease in total haemocyte count in CLW after 72 hrs from treatment. In addition Ghoneim et al., (2015), observed that THC in $6^{\text {th }}$ instar larvae of CLW was drastically descended in 0 -, 2- and 4 -day old larvae after treatment with LC_{50} of novaluron and cyromazine.

Effect of tested insecticides on DHC: Five types of haemocytes were found in the haemolymph of CLW larvae (Jones, 1962). They were identified as Prohaemocytes (PRs), Plasmatocytes (PLs), Granulocytes (GRs), Spherulocytes (SPs) and Oenocytoids (OEs). PRs are usually round in shape and small in size (Photo A\&B). According to data distributed in Table (6), percentages of PRs were decreased and amounted
to $7.4,4.8,9.3$ and 11.4% compared to 15.6% in control, $9.8,6.7,12.6$ and 14.2% compared to 19.3 $\%$ in control, $8.2,5.3,10.2$ and 12.3% compared to 14.6% in control and 6.8, 4.3, 7.6 and 8.2% compared to 9.3% in control after $24,48,72$ and 96 hrs from treatment with novaluron, chlorfluazuron, chlorpyrifos and lambdacyhalothrin, respectively. PLs are usually spindleshaped (Photo C\&D). After 24 hrs from treatment with novaluron and chlorfluazuron, PLs were significantly increased and reached to 48.3 and 49.2%, respectively.

On the other hand, reduction of PLs by chlorpyrifos and λ-cyhalothrin treatments was 39.6 and 40.5%, respectively, compared to 44.8% in control. While, there was no significance different in percentages of PLs between all treatments after 72 and 96 hrs compared in control. GRs are recognized as spherical or oval cells (Photo E\&F). In the current investigation, percentages of GRs were increased and reached to $39.7,40.5,44.3$ and 42.2% after 24 hrs from treatment with novaluron, chlorfluazuron, chlorpyrifos and λ-cyhalothrin,
respectively, compared to 32.4% in control. The function process of GRs and PLs is working as defense management cells against bodies. Therefore, the releases of these cells are usually occurred during each moulting stage and larval metamorphosis. While, percentages of SPs were decreased and reached to $2.4,2.7,3.2$ and 3.5% compared to 6.24% in control and reached to 3.6 , 3.2, 2.9 and 2.3% compared to 5.9% in control after 24 and 96 hrs from treatment with novaluron, chlorfluazuron, chlorpyrifos and λ-cyhalothrin, respectively. Percentages of OEs were increased and reached to 2.2, 1.8, 2.6 and 2.4% compared to 0.96% in control and reached to $2.63,2.14,3.58$ and 3.42% compared to 1.72% in control at the same treatments after 24 and 96 hrs , respectively.
The general reduction of PRs population in larvae
of CLW, in the present study, may be attributed either to the cytotoxic effects of CSIs on the mitotic division of PRs, conversion to other types of cells or to the inhibitory effects on the activity of hematopoietic organs responsible for PRs production (Zhu et al., 2012; Zibaee et al., 2012). These results were relatively similar to those obtained in (Abou-Taleb et al., 2015), suggested that the percentages of PRs, PLs and GRs in the haemolymph of CLW markedly decreased after treatment with both lufenuron and chlorfluazuron. In contrast, OEs and SPs increased after 72h of treatment. Also, Ghoneim et al., (2015), suggested that novaluron and cyromazine slightly decreased the percentages of PRs and PLs in last instar larvae of CLW. While, during the second half of larval instar, OEs were enhanced by both CSIs.

Table 6: Effect of tested insecticides at their L^{25} on the haemocyte counts of CLW $4^{\text {th }}$ instar larvae after different exposure times:

Time after exposure (hrs)	Treatments	Total haemocyte count ($\times 10^{3}$ cell $/ \mathrm{mm}^{3}$)	Percentages of different haemocyte types \pm SE				
			PRs	PLs	GRs	SPs	OEs
24	Control	$106.4 \pm 2440^{\text {a }}$	$15.6 \pm 1.6^{\text {a }}$	$44.8 \pm 3.9^{\text {b }}$	$32.4 \pm 3.7^{\text {d }}$	$6.24 \pm 3.2^{\text {a }}$	$0.96 \pm 0.3^{\text {c }}$
	Novaluron	$34.6 \pm 1342^{\text {e }}$	$7.4 \pm 1.7^{\text {d }}$	$48.3 \pm 3.4^{\text {a }}$	$39.7 \pm 2.9^{\text {c }}$	$2.4 \pm 2.7^{\text {c }}$	$2.2 \pm 0.4^{\text {a }}$
	Chlorfluazuron	$45.2 \pm 2069^{\text {d }}$	$4.8 \pm 1.3^{\text {e }}$	$49.2 \pm 4.6^{\text {a }}$	$40.5 \pm 4.8^{\text {bc }}$	$2.7 \pm 1.2^{\text {c }}$	$1.8 \pm 0.6^{\text {b }}$
	Chlorpyrifos	$72.3 \pm 2145^{\text {c }}$	$9.3 \pm 1.2^{\text {c }}$	$39.6 \pm 4.2^{\text {c }}$	$44.3 \pm 2.6^{\text {a }}$	$3.2 \pm 2.4^{\text {b }}$	$2.6 \pm 0.3^{\text {a }}$
	λ-Cyhalothrin	$87.6 \pm 1934^{\text {b }}$	$11.4 \pm 1.5^{\text {b }}$	$40.5 \pm 3.7^{\text {c }}$	$42.2 \pm 3.4^{\text {b }}$	$3.5 \pm 1.8^{\text {b }}$	$2.4 \pm 0.9^{\text {a }}$
48	Control	$67.3 \pm 2449^{\text {a }}$	$19.3 \pm 2.2^{\text {a }}$	$46.8 \pm 3.9^{\text {b }}$	$27.8 \pm 4.2^{\text {d }}$	$5.2 \pm 3.4^{\text {a }}$	$0.92 \pm 0.5^{\text {a }}$
	Novaluron	$25.2 \pm 1341^{\text {e }}$	$9.8 \pm 1.3^{\text {d }}$	$54.2 \pm 3.2^{\text {a }}$	$32.6 \pm 3.4^{\text {c }}$	$2.7 \pm 2.6^{\text {b }}$	$0.73 \pm 0.8^{\text {c }}$
	Chlorfluazuron	$32.4 \pm 1903{ }^{\text {d }}$	$6.7 \pm 1.8^{\text {e }}$	$56.5 \pm 2.4^{\text {a }}$	$33.8 \pm 2.6^{\text {c }}$	$2.3 \pm 2.4^{\text {b }}$	$0.68 \pm 0.3^{\text {c }}$
	Chlorpyrifos	$48.6 \pm 1465^{\text {c }}$	$12.6 \pm 1.2^{\text {c }}$	$36.5 \pm 2.7^{\text {c }}$	$47.2 \pm 3.2^{\text {a }}$	$2.9 \pm 3.2^{\text {b }}$	$0.82 \pm 0.4^{\text {b }}$
	λ-Cyhalothrin	$56.3 \pm 1370^{\text {b }}$	$14.2 \pm 0.9^{\text {b }}$	$37.8 \pm 2.9^{\text {c }}$	$44.3 \pm 2.8^{\text {b }}$	$2.4 \pm 2.8^{\text {b }}$	$0.84 \pm 0.6^{\text {b }}$
72	Control	$77.2 \pm 1551^{\text {a }}$	$14.6 \pm 1.3^{\text {a }}$	$45.3 \pm 1.8^{\text {a }}$	$34.7 \pm 2.4^{\text {b }}$	$5.6 \pm 1.2^{\text {a }}$	$0.86 \pm 0.2^{\text {c }}$
	Novaluron	$43.7 \pm 2290^{\text {d }}$	$8.2 \pm 1.2^{\text {d }}$	$46.7 \pm 2.3^{\text {a }}$	$42.3 \pm 3.2^{\text {a }}$	$1.7 \pm 2.4^{\text {c }}$	$0.93 \pm 0.3^{\text {c }}$
	Chlorfluazuron	$58.4 \pm 2153^{\text {c }}$	$5.3 \pm 1.5^{\text {e }}$	$48.2 \pm 2.5^{\text {a }}$	$43.8 \pm 3.6^{\text {a }}$	$1.4 \pm 1.3^{\text {c }}$	$1.32 \pm 0.9^{\text {b }}$
	Chlorpyrifos	$60.6 \pm 2250{ }^{\text {bc }}$	$10.2 \pm 1.3^{\text {c }}$	$42.9 \pm 2.1^{\text {a }}$	$41.6 \pm 2.8^{\text {a }}$	$3.8 \pm 2.7^{\text {b }}$	$2.46 \pm 0.7^{\text {a }}$
	λ-Cyhalothrin	$66.5 \pm 1864^{\text {b }}$	$12.3 \pm 1.6^{\text {b }}$	$44.3 \pm 1.6^{\text {a }}$	$36.8 \pm 3.4^{\text {b }}$	$4.2 \pm 1.9^{\text {b }}$	$2.13 \pm 0.5^{\text {a }}$
96	Control	$105.8 \pm 1209^{\text {a }}$	$9.3 \pm 2.4^{\text {a }}$	$42.5 \pm 3.3^{\text {a }}$	$41.3 \pm 3.7^{\text {a }}$	$5.9 \pm 2.3^{\text {a }}$	$1.72 \pm 0.4^{\text {c }}$
	Novaluron	$62.3 \pm 1795^{\text {e }}$	$6.8 \pm 1.8^{\text {d }}$	$44.2 \pm 3.6^{\text {a }}$	$42.8 \pm 3.3^{\text {a }}$	$3.6 \pm 2.8^{\text {b }}$	$2.63 \pm 0.9^{\text {b }}$
	Chlorfluazuron	$75.6 \pm 1522^{\text {d }}$	$4.3 \pm 1.7^{\text {e }}$	$46.2 \pm 2.5^{\text {a }}$	$44.2 \pm 2.5^{\text {a }}$	$3.2 \pm 1.4{ }^{\text {b }}$	$2.14 \pm 0.5^{\text {b }}$
	Chlorpyrifos	$83.2 \pm 2118^{\text {c }}$	$7.6 \pm 1.2^{\text {bc }}$	$40.6 \pm 2.8^{\text {a }}$	$45.3 \pm 2.9^{\text {a }}$	$2.9 \pm 1.6^{\text {c }}$	$3.58 \pm 0.8^{\text {a }}$
	λ-Cyhalothrin	$98.4 \pm 1954{ }^{\text {b }}$	$8.2 \pm 1.4{ }^{\text {b }}$	$39.4 \pm 2.7^{\text {a }}$	$46.7 \pm 3.4^{\text {a }}$	$2.3 \pm 1.6^{\text {c }}$	$3.42 \pm 0.3^{\text {a }}$

Note: PRs, Prohaemocytes; PLs, Plasmatocytes; GRs, Granulocytes; SPs, Spherulocytes and OEs, Oenocytoids.
*Within the same time after exposure, means followed by the same letter in the same column are not significantly different ($\mathrm{p}<0.05$, LSD test).

Haemocytes deformations:

REFERENCES

Abbott, W. S. 1925. A method for computing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265-267.
Abd El-Aziz, N. M. and H. H. Awad 2010. Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron, 41:203-209.
Abd El-Razik, M. A. A. and Z. M. S. Mostafa 2013. Joint action of two novel insecticides mixtures with insect growth regulators, synergistic compounds and conventional insecticides against Spodoptera littoralis (Boisd.) larvae. American Journal of Biochemistry and Molecular Biology, 3(4):369378.

Abdallah, M. D. 1991. A general view of the resistance problem of cotton pests in Egypt. Resistant-Pest Management, 3: 22-25.
Abdel-Rahman, S. M. and H. K. Abou-Taleb 2007. Joint toxic action of spinosad and spinetoram with certain IGR compounds against cotton leafworm. Alex. J. Agric. Res., 52 (3): 45-51.
Abdel-Rahman, S. M., E. M. Hegazy and A. E. Elwey 2007. Direct and latent effects of two chitin synthesis inhibitors to Spodoptera littoralis larvae (Boisd). American-Eurasian J. Agric. Environ. Sci., 2:457-464.
Abdien, S. A., M. A. Ahmed, G. A. AbduAllah and H. A. Ezz El-Din 2016. Potential evaluation of certain conventional pesticides on fourth instar larvae of cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) under laboratory conditions. Advances in Environmental Biology, 10(4): 282-287.
Abo El-Ghar, M. R., M. E. Nassar, M. R. Riskalla and S. F. Abdel-Ghafar 1986. Rate of development of resistance and pattern of crossresistance in fenvalerate and decamethrinresistant strain of Spodoptera littoralis. Agric. Res. Rev., 61:141-145.
Abo-Elghar, G. E., Z. A. Elbermawy, A. G. Youssef and H. K. Abd Elhady 2005. Monitoring and characterization of insecticides resistance in the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol., 8(4):397-410.
Abou-Taleb, H. A., H. M. Zahran and A. A. Gad 2015. Biochemical and physiological effects of lufenuron and chlorfluazuron on Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J. Entomol., 12(2):77-86.
Abou-Taleb, H. K. 2010. Differential toxicity of some insecticides against egg and larval stages of cotton leafworm and role of two detoxification enzymes. Alex. Sci. Exch. J., 31:356-364.

Adel, M. M. 2012. Lufenuron impair the chitin synthesis and development of Spodoptera littoralis Boisd (Lepidoptera: Noctuidae). J. Appl. Sci. Res., 8:2766-2775.
Arnold, J. W. and C. F. Hinks 1979. Insect haemocytes under light microscopy: technique. In: "Insect Haemocytes" (Gupta, A.P., ed.). Cambridge Univ. Press, Cambridge. pp. 531 538.

Brehélin, M. and D. Zachary 1986. Insect haemocytes: a new classification to rule out the controversy. In: "Immunity invertebrates, cells, molecules and defense reactions" (Brehélin, M., ed.). Heidelberg: Spring Verlag. pp. 37-48.
Eldefrawi, M. E., A. Toppozada, N. Mansour and M. Zeid 1964. Toxicological studies on the Egyptian cotton leaf worm, Prodenia litura. I. Susceptibility of different larval instars of P. litura to insecticides. J. Econ. Entomol., 57: 591593.

El-Zemaity, M. S., W. M. El-Deeb, Y. A. Osman and A. I. Hussien 2003. Development of resistance of Spodoptera littoralis to certain bioinsecticides. J. Environ. Sci., 6: 793-810.
Finney, D. J. 1971. Probit analysis, Cambridge Univ. Press, Cambridge.
Ghoneim, K., M. Tanani, Kh. Hamadah, A. Basiouny and H. Waheeb 2015. Effects of novaluron and cyromazine, chitin synthesis inhibitors, on the larval hemogram of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Inter. J. Adv. Res., 3(1):554-576.
Ghoneim, Y. F. 2002. Resistance to insecticides, IGRs and interaction effect between their mixtures on cotton leafworm Spodoptera littoralis (Boisd.). J. Agric Sci. Mansoura Univ., 27(7):4965-4974.
Ghoneim, Y. F., M. Singab, H. M. Abou-Yousef and N. S. Abdel-Hai 2012. Efficacy of certain insecticides and their mixtures with the tested IGRs against a field strain of the cotton leafworm, Spodoptera littoralis (Boisd.) under laboratory conditions. Australian Journal of Basic and Applied Sciences, 6(6): 300-304.
Gupta, S., Y. Wang, and H. Jiang 2005. Purification and characterization of Manduca sexta prophenoloxidase-activating proteinase-1, an enzyme involved in insect immune responses. Protein Expr. Purif., 39: 261-268.
Jones, J. C. 1962. Current concepts concerning insect haemocytes. Amr. Zool., 2: 209-246.
Kai, Z. P., J. Huang, S. S. Tobe and X. L. Yang 2009. A potential insect growth regulator: synthesis and bioactivity of an allatostatin mimic. Peptides, 30:1249-1253.
Kandil, M. A., H. K. Said, M. E. Abbas and A. A. M. Mahdy 2006. The effect of insect growth regulators and their binary mixtures on laboratory strain of Spodoptera littoralis
(Lepidoptera: Noctuidae). Bull. Ent. Soc. Egypt Econ., 32:47-63.
Mansour, N. A., M. E. Eldefrawi, A. Toppozada and M. Zeid 1966. Toxicological studies on the Egyptian cotton leafworm, Prodenia litura. VI. Potentiation and antagonism for organophosphorus and carbamate insecticides. J. Econ. Entomol., 59: 307-311.
Matthews, G. A. and M. Tunstall 1994. Insect pests of cotton. Commonwealth Insecticide of Entomology. Chapter, 24: 463-479.
Metayi, M. H. A., M. A. M. Ibrahiem and D. A. ElDeeb 2015. Toxicity and some biological effects of emamectin benzoate, novaluron and diflubenzuron against cotton leafworm. Alex. Sci. Exch. J., 36(4): 350-357.
Nakagawa, Y. S. Ishii and F. Matsumura 1993. Effect of diflubenzuron on the incorporation of UDP-N-acetyl- $\left[{ }^{3} \mathrm{H}\right] \quad$ Glucosamine (UDP- $\left[{ }^{3} \mathrm{H}\right]$ NAGA) to chitin in permeabilized and isolated integuments from the newly molted American Cockroach Periplaneta americana. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 106: 705-710.
Nakagawa, Y., S. Ishii and F. Matsumura 1996. Diflubenzuron stimulates phosphorylation of a 39 kDa integumental protein from newly molted American Cockroach (Periplaneta americana). Insect Biochemistry and Molecular Biology, 26: 891-898.
Nasr, H. M., M. E. Badawy and E. I. Rabea 2010. Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leafworm Spodoptera littoralis. Pesticide Biochemistry and Physiology, 99:198205.

Perveen, F. 2000. Sublethal effects of chlorfluazuron on reproductivity and viability of Spodoptera litura (F.) (Lep., Noctuidae). J. Appl. Ent., 124: 223-231.

Radwan, H. S. A., M. E. Nassar, A. E. El-Sheikh and M. A. A. Abdel-Razik 2009. Joint action of bio-insecticides and their role in development of resistance in Spodoptera littoralis (Boisd.). Minufiya. J. Agric. Res. 34 (2): 775-788.
Saha, S. 2011. Innate immune source and functional machinery in decapods of crustacean. Indian Journal of Fundamental and Applied Life Sciences, 1(3):310-324.
SAS Institute, Inc. (1999). PC—SAS users guide, Version 8. North Carolina statistical analysis system Institute, Inc.
Sufian, S. B., M. Ahmad, K. Yousaf and M. Naeem 2013. Pyrethroids and new chemistry insecticides mixtures against Spodoptera litura (Noctuidae: Lepidoptera) under laboratory conditions. Asian J. Agri. Biol., 1(2):45-50.
Tunaz, H. and N. Uygun 2004. Insect growth regulators for insect pest control. Turk. J. Agric. For., 28:377-387.
Zhu, Q., Y. He, J. Yao, Y. Liu, L. Tao and Q. Huang 2012. Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and haemolymph physiology of the cutworm, Spodoptera litura. J. Insect Sci., 12(27):1-13.
Zibaee, A., I. Zibaee and J. J. Sendi 2011. A juvenile hormone analog, pyriproxyfen, affects some biochemical components in the haemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pestic. Biochem. Physiol., 100:289-298.
Zibaee, A., A. R. Bandani and D. Malagoli 2012. Methoxyfenozide and pyriproxyfen alter the cellular immune reactions of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) against Beauveria bassiana. Pestic. Biochem. Physiol., 102:30-37.

سمية بعض منظمات النمو الحشريـة والمبيدات الثقليديـة ضد دودة ورق القطن وتأثثيرهم على النظور وأعداد خلايا الام

أجريت هذة الدراسة المعطلية لتققير سمية أثثين من منظمات النمو الحشرية (النوفاليرون و الكلورفلو ازيورون) مع أثثين من المبيات الحشرية النقلليدية (الكلوربيريفوس واللمداسيهالوثرين) ضد الأعمار البرقية الثانية والر ابعة لدودة ورق القطن. كما تم تقيبم الفعل السام المشترك للمبيدات المختبرة ضد العمر اليرقى الرابع • وأيضا تم أختبار التزكيز ات اللازمة لقتل • 1 و و \% \% من اليرقات المعاملة على بعض القياسات البيولوجية ـ وكذللك تأثير المبيدات

 على النزتيب) يليه الكلوربيريفوس ثم النوفاليرون و أفل大هم سمية اللمداسيهالوثرين. و وعند ان أكثر الخلطات فاعلية فى زيادة السمية هى الخلط بين الكلوربيريفوس بالتركيزاللازم لتتل ro \% من اليرقات المعامله مع النوفالبرون أو الكلورفلوازيورون بعد 97 ساعة من المعاملة. وأوضحت الدرار اسـة أيضا الخفض لورا لوز
 نسبة التغذير ووزن العذارى ونسبة ظهور الحشرات الكاملة عند المعاملة بالتركيزات اللازمة لقتل • ا و ب ب \% \% من اليرقات وذلك بمقارنتها بالكنترول. وأوضحت اللراسة أيضا الخفض اللحوظ للعدد الكلى لخلايا الدم وكذلك الثأثنثر على نسبة وجود كل نوع من خلايا الام ليرقات دودة ورق القطن عند معاملتها بالمبيدات المختبرة. ومن هذة
 اللتكاملة لدودة ورق القطن. وأيضا فاعلية إستخدام النتركيز ات اللازمة لقتل • ا و و ب \% لليرقات المعاملة مما يؤدى الى تقليل التركيز ات المستخدمة من المبيدات المختبرة وبالتالى التقليل من تأثير ها على البيئة.

$$
\begin{aligned}
& \text { سحر السيد الدسوقى- سماح مصطفى حسن، دعاء على فرج } \\
& \text { معهة بحوث وقاية النبات ، مركز البحوث الزراعية، الصبحية - الإسككنرية }
\end{aligned}
$$

